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 equations in an astonishing O(1) time complexity [5]–[8]. 

The discovery and physical realization of memristors 

has inspired the development of efficient approaches to 

implement neuromorphic computing systems that can 

mimic neuro-biological architectures and perform high-

performance computing for deep neural networks and 

optimization algorithms [9].

The similarity between the programmable resistance 

state of memristors and the variable synaptic strengths 

of biological synapses facilitates the circuit realization 

of neural network models [10]. Nowadays, artificial neu-

ral networks have become an extremely popular ma-

chine learning tool with a wide spectrum of applications, 

ranging from prediction/classification, computer vision, 

natural language processing, image processing, to sig-

nal processing [11]. Encouraged by its success, many 

researchers have attempted to design memristor-based 

computing systems to accelerate neural network training 

[12]–[22]. In [12], [13], memristor crossbars were used to 

form an on-chip training circuit for an autoencoder, an 

artificial neural network with one hidden layer. Training 

a multi-layer neural network requires the implementa-

tion of a back-propagation algorithm [23] for synaptic 

weight update. Such an implementation using memristor 

crossbars was discussed in [14]–[18]. In [19], [20], a mem-

ristor-based neural network was proposed by using an 

off-chip training approach where synaptic weights are 

pre-trained in software. This approach avoided the com-

plexity of mapping the back-propagation algorithm onto 

memristors but did not fully utilize the computational 

advantages of memristors. In [21], [22], research efforts 

were made to overcome hardware restrictions, such as 

scalability and routing congestion, to design memristor-

based large neural networks.

In addition to artificial neural networks, memristor-

based computing systems have also been proposed and 

analyzed for sparse coding, dictionary learning, and 

compressive sensing [24]–[30]. These applications share 

a similar sparse learning framework, where a sparse 

solution is sought to minimize a certain cost function. 

In [24], a sparse coding algorithm was mapped to mem-

ristor crossbars. In [25]–[29], memristors were used to 

achieve on-chip acceleration of dictionary learning algo-

rithms. However, the algorithms required the memristor 

network to be programmed multiple times due to the gra-

dient update step which resulted in computation errors 

caused by device variations. In [27], redundant memris-

tors were employed to suppress these device variations. 

Besides sparse learning, memristor crossbars have also 

been considered for implementing and training a proba-

bilistic graphical model [31] and image learning [32], [33].

Although memristor-inspired artificial intelligence (AI) 

applications are different from one another, the common 

underlying theme is the design of a mathematical pro-

gramming solver for an optimization problem specified 

by a machine learning or data processing task. Examples 

include linear programming for portfolio optimization 

[34], nonlinear programming for regression/classifica-

tion [35], and regularized optimization for sparse learn-

ing [36]. Therefore, a general question to be answered 

in this context is: how can one design a general memris-

tor-based computation framework to accelerate the optimi-

zation procedure?

The interior-point algorithm is one of the most com-

monly-used optimization approaches implemented in 

software. It begins at a point in the interior of the feasible 

region, applies a projective transformation so that the 

current interior point is the center of projective space, 

and then moves in the direction of the steepest descent 

[37]. However, inherent hardware limitations prevent 

a direct mapping from the interior-point algorithm to 

memristor crossbars. First, a memristor crossbar only 

allows square matrices with nonnegative entries during 

computation, since the memristance is always nonnega-

tive. Second, the memristor crossbar suffers from hard-

ware variations, which degrade the reading/writing ac-

curacy of memristor crossbars. To circumvent the first 

difficulty, additional memristors were used to represent 

negative elements of a square matrix [8], [38], [39]. In 

particular, the work [8] presented a memristor-based 

linear solver using the interior-point algorithm, which, 

however, requires programming of the resistance state 

of memristors at every iteration. Consequently, the lin-

ear solver in [8] is prone to suffering from hardware 

variations. Therefore, to successfully design memris-

tor-based optimization solvers, it is crucial to co-op-

timize algorithm, device and architecture so that the 

advantages of memristors can be fully utilized and the 

design complexity and the non-ideal hardware effects 

can be minimized. Our previous work [7], [30] showed 

that the alternating direction method of multipliers 

(ADMM) algorithm can take advantage of the hard-

ware implementation of memristor crossbars. With the 

aid of ADMM, one can decompose a complex problem 

into subproblems that require matrix-vector multiplica-

tions and solution of systems of linear equations. The 

decomposed operations are more easily mapped onto 

memristor crossbars. In this paper, we discuss how to 
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use the idea of ADMM to design memristor-based opti-

mization solvers for solving linear programs, quadratic 

programs and sparse optimization problems. Different 

from the interior-point algorithm, memristor crossbars 

are programmed only once, namely, independent of ADMM 

iterations. Therefore, the proposed memristor-based 

optimization framework is of highly resilient to random 

noise and process variations.

In addition to designing a memristor-based optimiza-

tion solver, we also discuss the application of memristors 

to solving eigenvalue problems. It is worth mentioning 

that computation of eigenvalues/eigenvectors is the key 

step in many AI applications and optimization problems, 

e.g., low-dimensional manifold learning [40], and semi-

definite projection in semidefinite programming [41]. In 

this paper, we present a generalization of the power itera-

tion (PI) method using memristor crossbars. Convention-

ally, PI only converges when the dominant eigenvalue is 

unique. Here, we adopt the Gram-Schmidt procedure [42] 

to handle convergence issues in the presence of multiple 

dominant eigenvalues.

The rest of the paper is organized as follows. In Sec-

tion II, we review the memristor technology for solving 

systems of linear equations. In Section III, we discuss 

the idea of ADMM for convex optimization. In Section 

IV, we derive memristor-based solvers for linear and 

quadratic programming. In Section V, we apply the 

memristor technology for sparse optimization. In Sec-

tion VI, we extend PI using memristors for eigenvalue/

eigenvector computation. In Section VII, we summarize 

the topics presented in the paper and discuss future 

research directions. We anticipate that this paper will 

inspire proliferation of memristor-based technologies, 

and fully utilize its extraordinary potential in emerging 

AI applications.

II. Memristors in Solving Systems  

of Linear Equations

A memristor has the unique property of recording the 

profile of excitations on the device. That is, the state 

(memristance) of a memristor changes only when a cer-

tain voltage higher than a threshold is applied at its two 

terminals. This memristive property makes it an ideal 

candidate for use as non-volatile memory [43], [44]. 

Physical memristors can be fabricated in a high density 

grid, and the resulting memristor crossbar structure 

is attractive for performing matrix-vector operations 

due to its high degree of parallelism [19]. Fig. 1 shows 

an example of array fabrication and its utility in matrix-

vector computation. Here a 64 128#  memristor array is 

integrated with a foundry made CMOS substrate. The 

memristor device shown in Fig. 1 is based on a HfO2 

device that has nearly 100% fabrication yield [45]. The 

 resistance state of each memristor can be tuned contin-

uously and leads to the conductance distribution of the 

array used in matrix-vector multiplication. We elaborate 

on the technical details on the memristor technology in 

the following.

In general, a N N#  memristor crossbar structure 

is illustrated in Fig. 2, where a memristor is connected 

between each pair of horizontal word-line (WL) and ver-

tical bit-line (BL). This structure can be implemented 

with a small footprint, and each memristor can be re-

programmed to different resistance states by controlling 

the voltage of WLs and BLs [5], [46], [47]. Let VI  denote a 

vector of input voltages on WLs. We obtain the current at 

each BL by measuring the voltage across a resistor with 

conductance .gs  If the memristor at the connection be-

tween WLi  and LB j  has a conductance of ,g ,i j  then the 

output voltage on the jth BL V ,jO  is given by [5],
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Figure 1. Example of circuits fabrication and computation. 

(a) An optical micrograph of a 64 128#  memristor array in-

tegrated with foundry made CMOS chip. (b) An example of 

matrix-vector computation using the 64 128#  array.
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or equivalently,
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where ({ } )xdiag i i
N

1=  denotes a diagonal matrix with di-

agonal entries , , , ,x x xN1 2 f  and G  is the conductance 

matrix of memristors whose ( , )i j th entry is given by .g ,i j  

In (1), the desired coefficient matrix C  can be realized 

by adjusting memristor conductivities { }g ,i j  and the bias 

resistor’s conductance .gs  In order to avoid out-of-range 

coefficients in the memristor crossbar, a pre-scaling step 

is required to scale all matrix coefficients to fall into the 

memristors’ conductance range. In this manner, one can 

perform matrix-vector multiplications through a pre-

configured (or programmed) memristor crossbar.

Reversing the above operation, the memristor cross-

bar structure can also solve a system of linear equa-

tions [6]. Here, we assume that the solution exists and 

is unique. It is clear from (1) that if we apply VO  on BLs, 

then VI  on WLs becomes the solution of the linear sys-

tem described by a pre-configured memristor network. 

An appealing property of the memristor-based linear 

equation solver is its high computational efficiency, 

an astonishing O (1) time complexity [15], since the 

matrix-vector multiplication (or its reverse operation) 

is performed in a parallel fashion. While this structure 

provides significant computational advantages, there 

are challenges introduced by the hardware restric-

tions of memristors. First, in the linear system (1), only 

a non-negative coefficient matrix can be mapped onto 

memristors. Second, a memristor crossbar is size-lim-

ited (e.g., 1024 1024#  or 2048 2048# ) due to manufac-

turing and performance considerations [10]. Third, a 

memristor crossbar suffers from hardware variations 

that introduce computational errors while performing 

matrix-vector operations. In what follows, we elaborate 

on the aforementioned challenges and present some 

possible solutions.

Since only non-negative coefficients can be mapped 

to memristors, it is essential to design a general mecha-

nism that can deal with negative coefficients. In previous 
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Figure 2. Illustration of a memristor crossbar.
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work [5], [17] it has been suggested that negative num-

bers in a memristor system can be represented by using 

two identical crossbars. Specifically, the weight matrix 

C  is split into two parts C1  and C2  so that ,C C C1 2= -  

where ( ) , ( ) ,C C C C1 2= = -+ +  and ( ) { , }maxx x0=+  is a 

positive operator taken elementwise for a matrix argu-

ment. Given nonnegative matrices C1  and ,C2  the ma-

trix-vector multiplication (1) can be obtained through 

the subtraction C V C V1 I 2 I-  [38], [39]. Instead of using 

two identical crossbars, we can eliminate the negative 

numbers by introducing auxiliary variables in the linear 

system (1),
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,V CV
C

D

B

I

V

V

V

0N N
O I

I

I

O
&= =

+

rr r

; ; ;E E E  (2)

where V R
N

I !
r

r

 is a newly introduced variable, Nr  is the 

number of nonzero columns of ( )C- + (namely, the num-

ber of columns of C  that contain negative elements), 

B R
N N

!
# r  is formed by nonzero columns of ( ) ,C- +  

D R
N N

!
#r  is a submatrix of IN  whose row indices are giv-

en by column indices of nonzero columns of ( ) ,C- +  and 

0Nr  is a zero vector of size .Nr  In Table I, we show that (1) 

can be recovered from (2) by eliminating .VI
r  We stress 

that compared to the use of an identical memristor 

crossbar (leading to N N2 2#  memristor network), the 

proposed scheme (2) requires fewer memristors, result-

ing in the memristor network of size ( ) ( ),N N N N#+ +r r  

where .N N#r

We remark that a memristor crossbar is size-limited 

due to manufacturing and performance considerations 

[10]. To improve its scalability, analog network-on-chip 

(NoC) communication structures can be adopted to ef-

fectively coordinate multiple memristor crossbars for 

supporting large-scale applications [10], [20], [48], [49]. 

Data transfers within the NoC structure maintain analog 

form and are managed by the NoC arbiters. Two poten-

tial analog NoC structures for multiple memristor cross-

bars are presented in Fig. 3. Fig. 3(a) shows a hierarchical 

structure of memristor crossbars [10], where four cross-

bar arrays are grouped and controlled by one arbiter, 

and those groups again form a higher-level group con-

trolled by a higher-level arbiter. Fig. 3(b) shows a mesh 

network-based structure of memristor crossbars, which 

resembles a mesh network-based NoC structure in multi-

core systems [49].

Furthermore, parameters of a memristor crossbar 

may differ from the target values due to variability in 

the fabrication process, environmental noise, and signal 

fluctuations from power supplies and neighboring wires 

[50]. Several methods have been proposed to mitigate 

these impairments in hardware [19], [27], [28], [30], [51]. 

In [19], [51], feedback programming techniques were 

used to improve the writing accuracy in memristor 

crossbars. In [28], a read peripheral circuitry that func-

tions as an analog-to-digital converter was used to elim-

inate analog distortions. In [27], multiple memristors 

were introduced to update a single weight. This method 

statistically averages out the conductance variations in 

Table 1. 
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Figure 3. Examples of NoC structures coordinating 

 multiple memristor crossbars. (a) Four crossbar arrays are 

grouped and controlled by one arbiter. The resulting higher-

level group is controlled by a higher-level arbiter. (b) Mesh 

 network-based structure of memristor crossbars.
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both time and space. However, it requires more memris-

tors and higher communication overhead. In addition to 

circuit-level techniques [19], [27], [28], [51], we will show 

that the non-ideal effects caused by hardware varia-

tions can also be mitigated by optimizing the algorithm 

prior to mapping to memristor crossbars.

III. Convex Optimization and ADMM

Although memristor-based AI applications are different 

such as sparse learning and dictionary learning [24]–

[30], the principle of designing memristor-based com-

putation accelerators is the same, namely, recognizing 

the optimization problem underlying the learning task 

and mapping the corresponding optimization algorithm 

onto a memristor network. In what follows, we provide 

some background on mathematical programming and 

focus on a solver called alternating direction method of 

multipliers (ADMM).

A. Preliminaries on Convex Optimization and ADMM

In general, an optimization problem can be cast as

 
( ),

,

fminimize

subject to

x

x X
x

!  (3)

where x R
n

!  is the optimization variable, ( )f $  denotes 

the cost function to be minimized, and X  denotes a con-

straint set. In this paper, we focus on the convex version 

of problem (3), where ( )f $  is a convex function and X  is 

a convex set [37]. In convex programming, a local mini-

mum given by a stationary point of (3) implies the global 

optimality. Convex optimization forms the foundation of 

many AI applications [35].

There exist many algorithms to solve convex optimi-

zation problems, such as gradient-type first-order meth-

ods [52], and primal-dual interior-point (second-order) 

methods [37]. Compared to the conventional optimiza-

tion methods, ADMM has drawn great attention in the 

last ten years [41], [53]. The main advantage of ADMM 

is that it allows us to split the optimization problem into 

subproblems, each of which can be solved efficiently 

and, in some cases, analytically.

A standard problem that is suitable for the applica-

tion of ADMM is given by
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!  are appropriate coefficients associated  

with a system of l  linear equality constraints. Problem  

(4) reduces to problem (3) when , , ,0A I B I cn m l= =- =   

and ( )g $  is an indicator function on the convex set 
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y X
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Here In  denotes the n n#  identity matrix, and 0n  is the 

n 1#  vector of all zeros. In what follows, while referring 

to identity matrices and vectors of all ones (or zeros), 

their dimensions are omitted for simplicity but can be in-

ferred from the context. ADMM is an iterative algorithm, 

and its kth iteration is given by [41]
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 ( ),Ax By ck k k k1 1 1nn t= + + +
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where n  is the Lagrangian multiplier (also known as the 

dual variable), t is a positive weight to penalize the aug-

mented term associated with the equality constraint of 

(4), and 2$  denotes the 2,  norm. The ADMM algorithm 

terminates when an e -accuracy is achieved, namely, 

|| || ,x yk k
2 # e-  and || || .x xk k 1

2 # e-
-  ADMM has a conver-

gence rate ( / )O K1  for general convex optimization prob-

lems [54], where K  is the number of iterations. In other 

words, given the stopping tolerance ,e  ADMM requires 

( / )O 1 e  iterations to converge. We remark that ADMM 

has a faster convergence rate than many gradient-type 

first-order algorithms, which often have the conver-

gence rate of ( / ) .O K1  In the next section, we will show 

that ADMM provides a suitable framework for mapping 

to a memristor network.

IV. Memristor-Based Linear  

and Quadratic Optimization Solvers

In this section, we employ memristor crossbars to solve 

linear and quadratic programs. Linear programs (LPs) 

and quadratic programs (QPs) are the most common 

optimization problems that are encountered in many 

applications such as resource scheduling, intelligent 

transportation, portfolio optimization, smart grid and 

signal processing [55]–[58]. The interior-point algo-

rithm is a standard method to solve LPs as well as QPs 

[37], with ~O n n .3 3 5^ h time complexity [59], where n is 

the number of optimization variables. The conventional 

interior-point algorithm running on CPUs/GPUs has low 

degree of parallelism. By contrast, as we next demon-

strate, ADMM breaks up optimization problems into 
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subproblems involving the solution of linear equations, 

which lend themselves to the use of memristors for ef-

ficient computation.

A. Linear Optimization With Memristors

The standard form of LP is expressed as follows,
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subject to

d x

Gx h x

T

x
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where x R
n

!  is the optimization variable, ,d GR
n

! !  

R
l n#  and h R

l
!  are given parameters, and the last in-

equality constraint represents the elementwise inequal-

ities x 0i $  for , , , .i n1 2 f=  In this paper, we assume 

that G  is of full row rank.

We begin by reformulating problem (10) as the ca-

nonical form (4) that is amenable to the use of ADMM 

algorithm,
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where y R
n

!  is a newly introduced optimization vari-

able, and similar to (5), p  and g  are indicator functions, 

with respect to constraint sets { | }x Gx h=  and { | },0y y $  

respectively. If we set ( ) ( ), ,f p Bx d x x A I IT
= + = =-  

and 0c = , then problem (11) is the same as problem (4).

Based on (11), the ADMM steps (6)–(9) become
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As we show next, the primary advantage of employing 

ADMM here is that problem (12) can be readily solved 

using memristor crossbars, and problem (13) yields a 

closed-form solution that only involves elementary vec-

tor operations.

Problem (12) is equivalent to
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where  : ( / )( ) .1y dk ka nt= - +  The solution of problem 

(15) is determined by its Karush-Kuhn-Tucker (KKT) 

conditions [37], ( ) ,0x GTa mt - + =  and ,Gx h=  where 

R
l

!m  is the Lagrangian multiplier. The KKT conditions 

imply a system of linear equations
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Based on (2), the linear system (16) can be efficiently 

mapped to memristor crossbars by configuring their 

memristance values according to the matrix .C

On the other hand, problem (13) is equivalent to
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where  : ( / ) .1xk k1b nt= +
+  The solution of problem (17) 

is determined by the projection of b  onto the nonnega-

tive orthant,

 ( ) .yk 1 b=+

+  (18)

Note that the positive part operator ( )$ + in (18) can be 

readily implemented using elementary logical or digi-

tal operations.

We summarize the memristor-based LP solver in Fig. 4. 

Although LP is a relatively simple optimization problem, 

the LP solver illustrates our general idea and paves the 

way for numerous memristor-based applications in op-

timization problems. Our solution framework offers two 

major advantages. First, in the linear system (16), the co-

efficient matrix C  is independent of the ADMM iteration 

so that memristors need to be configured only once. This 

feature makes it more attractive than gradient-type and 

interior-point algorithms, where memristors have to be 

reconfigured at each iteration [27]. Second, ADMM splits 

a complex problem into subproblems, each of which is 

easier to solve and implement in hardware.

B. Quadratic Optimization With Memristors

QP is an optimization problem whose objective and con-

straint functions involve quadratic and/or linear terms. 

There exist many variants of QP, such as a second-order 

cone program (SOCP) and a quadratically constrained 

quadratic program (QCQP) [37]. In this section, we fo-

cus on the design of a memristor-based solver for SOCP, 
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Figure 4. Memristor crossbar based solution framework in 

linear programming.
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since it is possible to convert a QCQP into a SOCP, e.g., 

homogeneous QCQP that excludes linear terms [7].

SOCP is a convex program for minimizing a linear 

cost function subject to linear and second-order cone 

constraints,

 
, || || ,x

minimize
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d x

Gx h x :( )
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where x R
n

!  is the optimization variable, G  and h  are 

given parameters, x :( )n1 1-  denotes a vector that consists 

of the first n 1-  entries of ,x  and xn  is the nth entry 

of .x  The last constraint in (19) is known as the second-

order cone constraint.

Similar to (11), we can rewrite problem (19) in the ca-

nonical form (4) that is amenable to the ADMM algorithm
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where y R
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!  is the newly introduced optimization vari-

able, and p  and g  are indicator functions with respect 

to constraint sets { | }x Gx h=  and { ||| || },y y y:( )n n1 1 2 #-  

respectively.

Following (6)–(9), the ADMM algorithm for solving 

problem (20) includes subproblem (15) with respect to 

the variable ,x  step (14) for updating dual variables ,n  

and a specific y -minimization problem (8),

 
|| ||

|| || ,y
2

minimize

subject to

y

y :( )n n

2
2

1 1 2

y

#

b
t

-

-  (21)

where recall from (17) that ( / ) .1xk k1b nt= +
+  The so-

lution of problem (21) is given by projecting b  onto a 

second-order cone [53],
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where 
|| ||
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n

n
n

T
n

T
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1 1 2
1 1 1 1 2b

b
b b

b
= +

-

- -
u c m 6 @  Simi-

lar to the memristor-based LP solver, the ADMM step 

(6) reduces to the solution of a system of linear equa-

tions that can be mapped onto memristor crossbars. 

In the ADMM step (21), we can use peripheral circuits 

including analog multipliers and summing amplifiers to 

evaluate the vector norm in (22) [60], [61]; see schematic 

illustration in Fig 5.

To summarize, one may exploit the alternating 

structure of ADMM to design memristor-based opti-

mization solvers. The crucial property to enable this 

is that ADMM helps in extracting parallel operations of 

matrix/vector multiplication/addition which can be im-

plemented using memristor crossbars and elementary 

hardware elements.

C. Performance Evaluation

In what follows, we present empirical results that show 

the effectiveness of the proposed memristor-based opti-

mization framework to solve LPs and QPs. Since the pres-

ence of hardware variations leads to a reduced configu-

ration accuracy on memristor crossbars, the matrix C  in 

(16) is actually modified to ,CC R= +
u  where R  denotes 

a random matrix whose elements are i.i.d. zero-mean 

Gaussian random variables. The quantity || || /|| ||CF FR  

then provides the level of hardware variations, where 

||·||F  denotes the Frobenius norm of a matrix. In the 

presence of hardware variations, we compare the solu-

tion x  above to the optimal solution x*  obtained from 

the off-the-shelf interior-point solver CVX [62], that 

excludes the effect of hardware variation. We adopt 

|| || /|| ||x x x* *
2 2-  (averaged over 50 random trials) to mea-

sure the error between x  and .x*  In ADMM, the aug-

mented parameter and the stopping tolerance are set to 

be { . , , , }0 1 1 10 100!t  and .10 3e = -

In Fig. 6, we present the difference between the mem-

ristor-based solution and the variation-free interior-point 

solution as a function of the level of hardware variations for 

problems with dimension { , , }.n 100 600 1000!  When the 

hardware variation is excluded, the memristor-based solu-

tion yields the same accuracy as the interior-point solution. 

As the problem size or the hardware variation increases, 

the difference from the interior-point solution increases. 

However, the induced error is always below 5%. In Fig. 7, we 

further show the  convergence of the memristor-based solu-

tion framework as a function of the choice of the ADMM 

parameter .t  For each value of ,t  50 random trials were 

performed, each of which involved 10% hardware varia-

tion. We find that the convergence of the memristor-based 

approach (to achieve e -accuracy solution) is robust to 

hardware variations and the choice of ADMM parameter .t  

Compared to LP, QP requires more iterations to converge 

due to its higher complexity. Moreover, a moderate choice 

of ,t  e.g., 1t =  in this example, improves the convergence 

of the memristor-based approach.

V. Memristor-Based Sparse Learning

Sparse learning is concerned with the problem of finding 

intrinsic sparse patterns of variables to be  optimized. 

β1

βn

βn /β1:(n)2

βn–1

Multiplier

Multiplier
Summing

Amplifier
Sqrt Divider

..
..

Figure 5. Schematic illustration of the hardware system for 

calculating yk 1+  in (22).
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This problem is central to machine learning and big-da-

ta processing. Examples of applications include model 

selection in regression/classification, dictionary learn-

ing, matrix completion in recommendation systems, im-

age restoration, graphical modelling, natural language 

processing, resource management in sensor networks, 

and compressive sensing [36], [63]–[65]. It is often the 

case that we can cast sparse learning as an optimiza-

tion problem that involves sparsity-inducing regulariz-

ers, such as the 1,  norm, mixed 1,  and 2,  norms, and 

the nuclear norm [36]. In this section, we focus on the 

problem of robust compressive sensing (CS), which 

recovers sparse signals from noisy observations [66]. 

We remark that CS yields a problem formulation similar 

to LASSO [67], sparse coding [24] and sensor selection 

problems [68]. Previous research efforts [66], [69]–[74],  

focused on software-based approaches for sparse sig-

nal recovery, with the support of CPUs/GPUs. Here we 

discuss approaches to employ memristor crossbars to 

design CS solvers.

A. Preliminaries on CS

Let z R*
p

!  be a sparse or compressible vector, e.g., a 

digital signal or image, to be recovered. We have access 

to measurements ,h Hz v*= +  where ,q p%  H R
q p

!
#  is 

a given measurement matrix, such as a random  Gaussian 
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matrix, and v R
q

!  is a stochastic or deterministic error 

with bounded energy || || .v 2 # p

The main goal of CS is to stably recover the unknown 

sparse signal z*  from noisy measurements .h  It has 

been shown in [75] that stable recovery can be achieved 

in polynomial time by solving the convex optimization 

problem for robust CS

 
|| ||

|| || ,

minimize

subject to

z

Hz h

1

2

z

# p-  (23)

where z R
n

!  is the optimization variable, and ||·||1  de-

notes the 1,  norm of a vector. In problem (23), the 1,  

norm is introduced to promote the sparsity of z  [70]. 

Note that problem (23) can also be formulated in the 

form of LASSO or sparse coding [24], [67]

|| || || || ,minimize Hz h z2
2

1
z

c- +

where c  is a regularization parameter that governs the 

tradeoff between the least square error and the sparsity 

of .z  In what follows, we focus on the problem formula-

tion in (23).

B. Memristor-Based Accelerator For Solving  

CS Problems

Similar to memristor-based linear and quadratic opti-

mization solvers, the key step to successfully applying 

memristor crossbar arrays to CS problems is to extract 

subproblems, with the aid of ADMM, that solve systems 

of linear equations. By introducing three new optimiza-

tion variables ,s wR R
q p

! !  and ,u R
q

!  problem (23) 

can be reformulated in a way that lends itself to the ap-

plication of ADMM,

 
( ) || || ( )

,

f p

0

minimize

subject to ,

z,s w u

z w 0 s u

1+ +

- = - =
 

(24)

where , ,z s w  and u  are optimization variables, and f  

and p  are indicator functions corresponding to the con-

straints of problem (23), namely,

 ( )f
0

otherwise,
z,s

Hz s h

3

=
- ='  (25)

and

 ( )
|| ||

p
0

otherwise.
u

u 2

3

# p
= '  (26)

In (24), the introduction of new variables s, w  and u  

together with the indicator functions (25)–(26) allows 

us to split the original constrained problem into sub-

problems for solving systems of linear equations, and 

elementary proximal operations related to the 1,  norm 

and the Euclidean ball constraint [53].

We recall from the standard form of ADMM given by (4) 

that if we set , , , , ,g gx z s y w uT T T T T
1$ $ $< <= = = + l^ ^h h6 6@ @  

,A BI I= =-  and 0c = , then problem (4) reduces to the 

CS problem (24). As a result, the ADMM step (6) with 

respect to z  and s  can be written as

 
,

2 2
minimize

subject to

z s

Hz s h

1 2
2

2 2
2

,z s
< < < <a a

t t
- + -

- =  (27)

where  : ( / ) ,  : ( / ) , [ , ]1 1w uk k k k T T T
1 1 2 2 1 2a n a n n n nt t= - = - =  

R
p q

!
+  is the vector of dual variables corresponding to 

problem (24), and k is the ADMM iteration number. The 

solution of problem (27) is given by KKT conditions: 

,z HT
1m at t+ =  ,s 2m at t- =  and ,Hz s h- =  where 

R
q

!m  is the Lagrangian multiplier corresponding to 

problem (27). These form a system of linear equations

 , .C

z

s

h

C

I

0

H

0

I

I

H

I

0

p

q

q

T

q

1

2a

m

at

t

t

t= =

-

-> > >H H H  (28)

Based on (2), the linear system (28) can be mapped onto 

a memristor network by configuring its memristance 

values. Recall that a programmed memristor crossbar 

only requires a constant-time complexity O(1) to solve 

problem (28).

The ADMM step (8) with respect to w  and u  becomes

 ( ) ,p
2 2

minimize w u w u1 1 2
2

2 2
2

w,u
< < < < < <b b

t t
+ + - + -  (29)

where : ( / )1zk k
1

1
1b nt= +

+  and : ( / ) .1sk k
2

1
2b nt= +

+  Note 

that problem (29) can be decomposed into two prob-

lems with respect to w  and u :

 
,

,  .
2

minimize 

minimize subject to 

w w

u u

1 1 2
2

2 2
2

2

w

u

< < < <

< < < < #
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b

t
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-

*  (30)

Both problems in (30) can be solved analytically [30]

 
( / ) ( / ) ,

{ , } ,min

1 11 1w

u

k

k

1
1 1

1
2 2

2 2

2
< <

< <

b b

b
b

b
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p
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+ +
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(31)

where recall that $ +^ h  is the positive part operator.

Similar to LPs and QPs, the hardware design of the 

memristor-based CS solver mainly consists of two parts. 

The first part is the memristor-based linear system solv-

er, in which memristor crossbars are only programmed 

once since the coefficient matrix C  in (28) is indepen-

dent of ADMM iterations. The second part is the digi-

tal or analog implementation of the solution to problem 

(31). This requires the calculation of the 2,  norm of a 

vector that can be realized using elementary logic or 

digital operations; similar to Fig. 5. The ADMM-based 

solution exhibits low hardware complexity.
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We finally remark that one can adjust the ADMM pa-

rameter t  to avoid the hardware variation-induced singu-

larity for C  in (28). This is supported by the invertibility of 

the Schur complement of C  [76], ( / )( ) .1 I HHTt- +  Spe-

cifically, if t is too large, the Schur complement approach-

es zero (towards singularity). If t  is too small, the effect 

of hardware variations on H  is magnified. Therefore, an 

appropriate choice of t  enhances the robustness of mem-

ristor-based optimization solvers to hardware variations.

C. Performance Evaluation

Next, we empirically show the effectiveness of the pro-

posed solution framework for sparse signal recovery. As-

sume that the original signal z)  is of dimension p 1024=

with { , , , , }s 10 50 100 150 200!  nonzero elements. These 

nonzero spike positions are chosen randomly, and their 

values are chosen independently from the standard nor-

mal distribution. To specify the CS problem (23), a mea-

surement matrix H R
500 1024

!
#  with i.i.d. entries from 

the standard normal distribution is generated, and set 

10 3p = - . The vector of measurement noises v  is drawn 

from the normal distribution ( , . )0 010 IN . To evaluate 

the recovery performance, the following two measures 

are employed a) the difference between the recovered 

signal z  and the true sparse signal ,z)  namely, ,z z< <-
)  

and b) the sparse pattern difference between z  and .z)  

All the performance measures are obtained by averag-

ing over 50 random trials. For ADMM, unless specified 

otherwise, we set { . , , , }0 1 1 10 100!t  and 10 3e = -  for its 

augmented parameter and stopping tolerance.

In Fig. 8, we present the performance of sparse sig-

nal recovery by using the memristor-based solution 

framework. Fig. 8(a) shows the signal recovery error as 

a function of the sparsity level s under different levels of 

hardware variations. We compare the resulting solution 

with the solution obtained from the orthogonal  matching 
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pursuit (OMP) algorithm [77], a commonly used soft-

ware-based CS solver. We observe that the recovery ac-

curacy improves as the signal becomes sparser, namely, 

s is smaller. This is not surprising, since a sparser signal 

can be more stably recovered at the rate much smaller 

than what is commonly prescribed by Shannon-Nyquist 

theorem [70]. By fixing s, we observe that the recovery 

accuracy decreases while increasing the level of hard-

ware variations. Although the presence of hardware 

variations negatively affects the recovery accuracy, 

the sparse pattern error shown by Figs. 8(b) and (c) is 

acceptable, as it is below 6%. In particular, in Fig. 8(c) the 

recovered signal yields almost the same sparse support 

as that of the original signal even in the presence of 10% 

hardware variation. These promising results show that 

the memristor-based CS solver is quite robust to hard-

ware variations, and is able to provide reliable recovered 

sparse patterns. Lastly, we investigate the convergence 

of the memristor-based approach against different 

values of the ADMM parameter .t  Similar to Fig. 7, a 

moderate choice of ,t  namely, 10t =  in this example, is 

preferred over others as shown in Fig. 8(d).

VI. Power Iteration via Memristors: 

Application to PCA

Principal component analysis (PCA) is the best-known 

dimensionality-reduction technique to find intrinsic low-

dimensional manifolds from high-dimensional data [40]. 

The implementation of PCA requires the computation of 

the principal eigenvalues and the corresponding eigen-

vectors of a symmetric matrix. The calculation of eigen-

values and eigenvectors is also motivated by optimiza-

tion problems, e.g., a projection onto semidefinite cones 

in semidefinite programming [78]. Since power iteration 

(PI) is a widely-used algorithm for eigenvalue analysis 

[79], here we describe a memristor-based PI framework.

A. Preliminaries on PI

PI is an iterative algorithm that converges to the eigen-

vector associated with the largest eigenvalue of a matrix. 

Let {( , )}ui i i
n

1m =  denote a set of eigenvalue-eigenvector 

pairs for matrix ,A R
n n

!
#  where we refer to ,1m  regard-

less of its multiplicity, as the dominant eigenvalue. The 

kth iteration of PI is given by [42]

 ,x
Ax
Ax

1
k

k

k

2

1

< <
=

-

-

 (32)

where x0  is an arbitrary starting vector. If ,k " 3  then 

by (32), xk  converges to the eigenvector ,u1  and thus 

( ) /( )x Ax x xk T k k T k  converges to the largest eigenval-

ue .1m  The convergence of PI is geometric, with ratio 

| | | |/2 1m m  [42]. Therefore, PI converges slowly if there is 

an eigenvalue close in magnitude to the dominant eigen-

value. Moreover, if the largest eigenvalue is not unique, 

say 1 2m m=  with multiplicity 2, the limiting point xk  fails 

to converge to ,u1  and instead converges to a linear 

combination of eigenvectors u1  and u2  [80]. Thus, it is 

required that the memristor-based PI be able to address 

the issue of repeated eigenvalues.

B. Memristor-Based PI

It is clear from (32) that the PI algorithm involves a) 

matrix-vector multiplication ,Axk 1-  and b) evaluation of 

a vector norm. Based on (2), the first operation is easily 

implemented using memristor crossbars. And the second 

operation can be realized using elementary digital (or 

analog) circuits [30]. The major challenge of customizing 

PI for memristor implementation is to determine the mul-

tiplicity of the dominant eigenvalue and to find the corre-

sponding eigenvectors. In what follows, we show that with 

the aid of Gram-Schmidt process such a problem can be 

addressed via elementary matrix-vector operations.

We assume that the largest eigenvalue has multiplic-

ity s, namely, .s1 2 gm m m= = =  Under s random initial 

vectors, we denote by { }yi i
s

1=  the converging vectors of 

PI. It is known from [80] that { }yi i
s

1=  are linear combi-

nations of eigenvectors { } .ui i
s

1=  This implies two facts. 

First, given p initial vectors, the resulting { }yi i
p

1=  are 

linearly independent if .p s#  Therefore, we are able 

to determine the number of repeated dominant eigen-

values by adding new columns to Yp  until its rank 

stops increasing where  : [ , , ],Y y yp p1 g=  and its rank 

can be determined by the singularity of .Y Yp p
T  Second, 

given the number of repeated eigenvalues, finding the 

eigenvectors { }ui i
s

1=  is equivalent to seeking an or-

thogonal subspace spanned by { } .yi i
s

1=  This procedure 

is precisely described by the Gram-Schmidt process. 

Given a sequence of vectors { } ,yi i
s

1=  the Gram-Schmidt 

process generates a sequence of orthogonal vectors 

{ }ui i
s

1=  [42],

 ,  , , ,i s2u y
u u

y u
ui i

j
T

j

i
T

j

j

i

j

1

1

g= - =

=

-

/  (33)

where .u y1 1=

The major challenge of customizing power iteration for memristor  

implementation is to determine the multiplicity of the dominant  

eigenvalue and to find the corresponding eigenvectors.
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By incorporating the Gram-Schmidt process (33), 

the generalized PI algorithm is able to calculate the 

dominant eigenvalue even if it is not unique. Once the 

dominant eigenvalue 1m  is found, the second largest 

eigenvalue 2m  can then be found by performing PI to 

a new matrix ,A u uT
1 1 1m-  known as a matrix deflation 

[42]. Since both (32) and (33) only involve elementary 

matrix-vector operations, it is possible to accelerate PI 

by using memristors.

C. Performance Evaluation

In what follows, we demonstrate the empirical perfor-

mance of the proposed PI method to compute the domi-

nant eigenvalues/eigenvectors based on a synthetic 

dataset and to perform PCA based on the Iris flower 

dataset [81]. To specify the eigenvalue problem, let A  

be a symmetric matrix of dimension .n 50=  We assume 

that the dominant eigenvalue is repeated k times, where 

[ , ] .1 10k !  The proposed algorithm continues until a 

10 4- -accuracy solution is achieved. Such an experiment 

is performed over 50 independent trials. In Fig. 9, we pres-

ent the computation error, success rate, and the number 

of iterations of PI against the multiplicity of the domi-

nant eigenvalue. Here the computation error is averaged 

over 50 trials, and given by the difference between the 

memristor-based solution m  and the optimal solution *m  

obtained from the eigenvalue decomposition. As we can 

see, the proposed PI solver is of high accuracy with error 

less than 10 6- . Moreover, at each trial, the proposed solv-

er correctly recognizes the number of repeated dominant 

eigenvalues. And it converges fast, within 1000 iterations.

In Fig. 10, we apply the proposed PI solver to find the 

principal components (PCs) of the Iris flower dataset, 

which contains 150 iris flowers, and each flower involves 

4 measurements, sepal length, sepal width, petal length 

and petal width. These flowers belong to three different 

species: setosa, versicolor, and virginica. We compare 

the memristor-based approach with the standard pca 

function in MATLAB. As we can see, both methods yield 

the same 2 D data distribution and the same variance 

of each PC. These results imply that the application of 

memristor crossbars is of feasible for this problem.

VII. Conclusion and Future Directions

In this paper, we presented an overview of a memris-

tor-based optimization/computation framework that 

exploits both memristors’ properties and algorithms’ 

structures. Popularly used algorithms, ADMM and PI, 

were selected to illustrate memristor crossbar-based 

implementations. We showed that ADMM is able to de-

compose a complex problem into matrix-vector multipli-

cations and subproblems for solving systems of linear 

equations, which then facilitates memristor-based com-

puting architectures. To solve the eigenvalue problem 

using memristor crossbars, we presented a generalized 

version of the PI algorithm in the presence of repeated 

dominant eigenvalues. The effectiveness of memristor-

based framework was illustrated via examples involving 

LP, QP, compressive sensing and PCA. The framework 

showed a great deal of promise with low computational 

complexity and high resiliency to hardware variations.

Although there has been a great deal of progress 

on the design of memristor-based computation accel-

erators, many questions and challenges still remain to 

1.5

1

0.5

0

–0.5

–1

–1.5

P
C

2
, 
V

a
ri
a
n
c
e
 5

.3
1

PC1, Variance 92.46

(a)

–4 –2 0 2 4

1.5

1

0.5

0

–0.5

–1

–1.5

P
C

2
, 
V

a
ri
a
n
c
e
 5

.3
1

PC1, Variance 92.46

(b)

–4 –2 0 2 4

Memristor-Based

Approach MATLAB pca Func.

Setosa Versicolor Virginica

Figure 10. PCA results for the Iris flower dataset. (a) memris-

tor-based approach; (b) MATLAB pca function.

2

4

0

100

50

0

14
12
10

8
6

E
rr

o
r:

 | λ
–
λ
*|

S
u

c
c
e

s
s

R
a

te
 (

%
)

N
u

m
b

e
r 

o
f

It
e

ra
ti
o

n
s
 (

lo
g

2
)

× 10–7

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Multiplicity Time of Dominanat Eigenvalue

Figure 9. Performance of the proposed PI solver against 

the multiplicity of the dominant eigenvalue.



42  IEEE CIRCUITS AND SYSTEMS MAGAZINE   FIRST QUARTER 2018

 enable its adoption in real-life applications, e.g., enhanc-

ing memristor-based computing precision, co-optimizing 

algorithm and hardware for nonconvex optimization, and 

determining the feasibility of other problems that can 

benefit from memristor-based hardware implementation. 

Some specific future directions are discussed below.

First, memristor-based computing systems have not yet 

demonstrated a competitively high computation accuracy 

for solving practical problems in the presence of hardware 

variations. To enhance precision, extra hardware resourc-

es would be needed. It is thus essential to optimize a full 

hardware system under given hardware resources. Problems 

of interest include selection of device-level components in 

hardware implementation, and design of energy-efficient 

on-chip communication infrastructure.

Second, the convergence of ADMM for nonconvex 

optimization is not guaranteed. Therefore, new optimi-

zation algorithms, appropriate for hardware design, are 

desired to address nonconvex problems, e.g., artificial 

neural network based applications. Traditional algorithms 

to train neural networks, such as back-propagation or 

other gradient-based approaches, require updating of 

the gradient information at each iteration. This leads to 

frequent writing/reading operations on memristor cross-

bars and thus an increasing amount of energy consump-

tion. Motivated by that, innovation beyond the existing 

algorithms is encouraged to co-optimize algorithm and 

hardware for nonconvex optimization.

Third, in many scenarios, it is assumed that certain 

solutions exist for the considered optimization and ma-

chine learning problems. However, it is possible that the 

mapped problems on memristor crossbars are infeasi-

ble, e.g., no solution exists for an overdetermined linear 

system. Therefore, a robust memristor crossbar-based 

solver should be capable of identifying the feasibility of 

problems. This identification procedure should be im-

plemented by using device-level components subject to 

limited hardware resources.

Fourth, there is much work to be done to expand the 

applications of memristor crossbars from the end-user 

perspective. Some potential lucrative applications include 

memristor-based smart sensors, small footprint intelli-

gent controllers in wearable devices, and on-chip training 

platforms in autonomous vehicles and Internet of Things.

To sum up, memristor technology has the potential 

to revolutionize computing, optimization and machine 

learning research due to its orders-of-magnitude im-

provement in energy efficiency and computation speed. 

Moving forward, engineers and scientists in different 

fields, such as, machine learning, signal processing, cir-

cuits and systems, and materials should collaborate with 

each other to make significant progress on this exciting 

research topic.
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